skip to main content


Search for: All records

Creators/Authors contains: "Llopiz, Joel K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Zooplankton are sampled on Northeast U.S. Shelf Long-Term Ecological Research (NES-LTER) Transect cruises in summer and winter seasons in oblique tows with a bongo net equipped with two mesh sizes (335 micron and 150 micron). Tows are conducted at standard stations L1 to L11 along longitude 70 deg 53 min W extending southward from near Martha’s Vineyard, Massachusetts, to approximately 150 km offshore. Counts for taxa morphologically identified from the 335 micron net were provided by the Northeast Fisheries Science Center of the NOAA National Marine Fisheries Service. Counts were divided by volume and multiplied by depth sampled for abundance as per meter squared. The first version of this data package provides the abundance of 14 taxa from the 335 micron net for cruises in 2018 - 2020 in a described data table, as well as a supplemental table for the tow metadata. 
    more » « less
  2. This dataset lists the inventory of physical samples from zooplankton net tows conducted on Northeast U.S. Shelf Long-Term Ecological Research (NES-LTER) Transect cruises, ongoing since 2017. The NES-LTER transect lies south of Martha’s Vineyard, Massachusetts. Dedicated NES-LTER cruises target summer and winter seasons, with samples collected in oblique tows with a bongo net fitted with 150 and 335 micron mesh nets, as well as a ring net with a 20 micron mesh net. Additional cruises along the NES-LTER Transect, including spring and fall cruises with the Ocean Observatories Initiative, collect samples in vertical tows using a ring net with 150 micron mesh net. Samples are shared with different labs for purposes including DNA metabarcoding, stable isotopes, and morphological identification. 
    more » « less
  3. This package provides a table of day cruises to the Martha's Vineyard Coastal Observatory for Northeast U.S. Shelf Long-Term Ecological Research (NES-LTER). Sampling frequency is approximately monthly, with NES-LTER sampling ongoing since 2017. Cruises involve collection of water column bottle samples, surface bucket samples, and zooplankton net tow samples, as well as ship provided data. The event number for each cruise is provided, along with date, vessel name, cruise identifier where applicable, link to data location (for CTD, ADCP, and other underway data), and checklist of six data types. 
    more » « less
  4. These data represent the diet composition of small pelagic fishes assessed by the Northeast U.S. Shelf Long-Term Ecological Research (NES-LTER) project. The six species of fish in this dataset represent a subset of the species collected in bottom trawls conducted by the NOAA Fisheries Northeast Ecosystems Surveys from Cape Hatteras to the Gulf of Maine. Sampling occurred in the Spring and Fall seasons. Fish were frozen and stomach content analyses were conducted by the Fisheries Oceanography and Larval Fish Ecology Lab at the Woods Hole Oceanographic Institution. Data are counts and length measurements for prey items examined under a dissecting microscope. Prey species were matched to the lowest taxonomic level in the Integrated Taxonomic Information System (ITIS) for scientific name and taxonomic serial number. The dataset was supplemented with geospatial and temporal information from NOAA Fisheries trawl databases. 
    more » « less
  5. Secor, David (Ed.)
    Abstract The Northeast US shelf ecosystem is undergoing unprecedented changes due to long-term warming trends and shifts in regional hydrography leading to changes in community composition. However, it remains uncertain how shelf occupancy by the region's dominant, offshore small pelagic fishes, also known as forage fishes, has changed throughout the late 20th and early 21st centuries. Here, we use species distribution models to estimate the change in shelf occupancy, mean weighted latitude, and mean weighted depth of six forage fishes on the Northeast US shelf, and whether those trends were linked to coincident hydrographic conditions. Our results suggest that observed shelf occupancy is increasing or unchanging for most species in both spring and fall, linked both to gear shifts and increasing bottom temperature and salinity. Exceptions include decreases to observed shelf occupancy by sand lance and decreases to Atlantic herring's inferred habitat suitability in the fall. Our work shows that changes in shelf occupancy and inferred habitat suitability have varying coherence, indicating complex mechanisms behind observed shelf occupancy for many species. Future work and management can use these results to better isolate the aspects of forage fish life histories that are important for determining their occupancy of the Northeast US shelf. 
    more » « less
  6. This dataset includes hatch and larval period for sand lance collected in 2019 and results from particle tracking runs of simulated sand lance larvae throughout the Northeast U.S. Shelf as part of Long-Term Ecological Research (NES-LTER). Release dates vary by region, corresponding to hatch and settlement dates of settling sand lance collected in 2019. Particles were depth-keeping throughout the upper 40 m to best replicate our understanding of the vertical distribution of sand lance larvae. Data were used to determine the average particle transport pathways from these sand lance habitats, including connectivity among the three hotspots, and spatial variability of connectivity within each hotspot. Further information can be found within the manuscript: Suca, J. J., Ji, R., Baumann, H., Pham, K., Silva, T. L., Wiley, D. N., Feng, Z., & Llopiz, J. K. (2022). Larval transport pathways from three prominent sand lance habitats in the Gulf of Maine. Fisheries Oceanography, 31( 3), 333-352. https://doi.org/10.1111/fog.12580 
    more » « less
  7. Ojaveer, Henn (Ed.)
    Abstract Northern sand lance (Ammodytes dubius) and Atlantic herring (Clupea harengus) represent the dominant lipid-rich forage fish species throughout the Northeast US shelf and are critical prey for numerous top predators. However, unlike Atlantic herring, there is little research on sand lance or information about drivers of their abundance. We use intra-annual measurements of sand lance diet, growth, and condition to explain annual variability in sand lance abundance on the Northeast US Shelf. Our observations indicate that northern sand lance feed, grow, and accumulate lipids in the late winter through summer, predominantly consuming the copepod Calanus finmarchicus. Sand lance then cease feeding, utilize lipids, and begin gonad development in the fall. We show that the abundance of C. finmarchicus influences sand lance parental condition and recruitment. Atlantic herring can mute this effect through intra-guild predation. Hydrography further impacts sand lance abundance as increases in warm slope water decrease overwinter survival of reproductive adults. The predicted changes to these drivers indicate that sand lance will no longer be able to fill the role of lipid-rich forage during times of low Atlantic herring abundance—changing the Northeast US shelf forage fish complex by the end of the century. 
    more » « less
  8. null (Ed.)
    Successful management and mitigation of marine challenges depends on cooperation and knowledge sharing which often occurs across culturally diverse geographic regions. Global ocean science collaboration is therefore essential for developing global solutions. Building effective global research networks that can enable collaboration also need to ensure inter- and transdisciplinary research approaches to tackle complex marine socio-ecological challenges. To understand the contribution of interdisciplinary global research networks to solving these complex challenges, we use the Integrated Marine Biosphere Research (IMBeR) project as a case study. We investigated the diversity and characteristics of 1,827 scientists from 11 global regions who were attendees at different IMBeR global science engagement opportunities since 2009. We also determined the role of social science engagement in natural science based regional programmes (using key informants) and identified the potential for enhanced collaboration in the future. Event attendees were predominantly from western Europe, North America, and East Asia. But overall, in the global network, there was growing participation by females, students and early career researchers, and social scientists, thus assisting in moving toward interdisciplinarity in IMBeR research. The mainly natural science oriented regional programmes showed mixed success in engaging and collaborating with social scientists. This was mostly attributed to the largely natural science (i.e., biological, physical) goals and agendas of the programmes, and the lack of institutional support and push to initiate connections with social science. Recognising that social science research may not be relevant to all the aims and activities of all regional programmes, all researchers however, recognised the (potential) benefits of interdisciplinarity, which included broadening scientists’ understanding and perspectives, developing connections and interlinkages, and making science more useful. Pathways to achieve progress in regional programmes fell into four groups: specific funding, events to come together, within-programme-reflections, and social science champions. Future research programmes should have a strategic plan to be truly interdisciplinary, engaging natural and social sciences, as well as aiding early career professionals to actively engage in such programmes. 
    more » « less
  9. Abstract

    Northern sand lance (Ammodytes dubius) are among the most critically important forage fish throughout the Northeast US shelf. Despite their ecological importance, little is known about the larval transport of this species. Here, we use otolith microstructure analysis to estimate hatch and settlement dates of sand lance and then use these measurements to parametrize particle tracking experiments to assess the source–sink dynamics of three prominent sand lance habitats in the Gulf of Maine: Stellwagen Bank, the Great South Channel, and Georges Bank. Our results indicate the pelagic larval duration of northern sand lance lasts about 2 months (range: 50–84 days) and exhibit a broad range of hatch and settlement dates. Forward and backward particle tracking experiments show substantial interannual variability, yet suggest transport generally follows the north to south circulation in the Gulf of Maine region. We find that Stellwagen Bank is a major source of larvae for the Great South Channel, while the Great South Channel primarily serves as a sink for larvae from Stellwagen Bank and Georges Bank. Retention is likely the primary source of larvae on Georges Bank. Retention within both Georges Bank and Stellwagen Bank varies interannually in response to changes in local wind events, while the Great South Channel only exhibited notable retention in a single year. Collectively, these results provide a framework to assess population connectivity among these sand lance habitats, which informs the species' recruitment dynamics and impacts its vulnerability to exploitation.

     
    more » « less